⛄️ مثال ماشین عمه برتا (Aunt Bertha) توسط ندبلاک در مقاله Psychologism and Behaviourism (1981) علیه تعریف تورینگی از هوش ارائه شده است. بلاک این ماشین را با حافظهای عظیم در نظر میگیرد که تمام پاسخهای عمه برتای واقعی برای پرسشهای مختلف در طول یک زمان مشخص (مثلا یکساعت) در آن برنامهنویسی شده باشد. لذا ندبلاک استدلال میکند که #آزمون_تورینگ شرط کافی برای هوش نیست.
⛄️ چنین ماشینی - بنا به فرض - خواهد توانست آزمون تورینگ را با پاسخهای کاملا شبیه انسان پاس کند. اما پاسکردن #تست_تورینگ توسط این ماشین نمیتواند شاهدی بر هوشمندی آن باشد. درستی پاسخهای این ماشین به سؤالات آزمون، از آنجا ناشی میشود که پاسخهای عمه برتای واقعی درست و بجا هستند و این ماشین صرفا برای ذخیره و تکرار آن پاسخها برنامهنویسی شده است.
⛄️ باید توجه داشت که ماشین عمه برتا یک ماشین فرضی (و نه واقعی و کاربردی) است که حتی اگر امکان تحقق عملی نداشته باشد، اما صرف امکان منطقی آن برای هدف بلاک کفایت میکند. در واقع این استدلال در سطح مفهومی طراحی شده و میخواهد تحلیل مفهومی تست تورینگ از هوش را به چالش بکشد.
⛄️ ممکن است استدلال بلاک را (که ابتدای دهه 80 نیز ارائه شده)، مربوط به استراتژی کلاسیک و قدیمی در #هوش_مصنوعی تلقی کنیم که براساس ذخیرهسازی و حافظه در #برنامه_نویسی پیش میرفت. حال آنکه #یادگیری_ماشین در دهههای اخیر اساسا برپایه ذخیرهسازی در حافظه نیست. بلکه ماشین در دوره کارورزی (training) یکسری موقعیتها را تمرین میکند و پاسخهای بهینه برای هر موقعیت را در مییابد. او آنگاه در موقعیتهای جدید براساس تمرینهایی که در دوره کارورزی گذرانده، پاسخ درست و بجا را بیرون میدهد.
⛄️ مسئله اما اینجاست که چنین ماشینی کماکان از وابستگی به هوش انسانی برنامهنویس و از معیار تشخیص نوع موقعیت جدید خلاصی نمییابد. او همچنان در نحوه مراجعه به ورودی و خروجیهای دوره کارورزی برای پاسخدهی به موقعیت جدید، از نوعی برنامهنویسی پیروی میکند که هوش انسانی برایش ریلگذاری کرده است.
و از آن مهمتر، تشخیص اینکه موقعیت جدید از نوع کدام موقعیتهای تمرینشدهی پیشین است، خود نیازمند معیاری بسیار پیچیده و گاه منحصر بفرد است.
⛄️ ممکن است ماشین قبلا موقعیت زیادی را تمرین کرده و پاسخهای درست و بجا برای هریک را دستهبندی کرده باشد. ولی اکنون با موقعیت جدیدی مواجه شده که به آسانی قابل تطبیق با موقعیتهای (ولو پرشمار) دوره کارورزی نباشد. او با چه معیاری باید موقعیت جدید را در دستهبندی خود بگنجاند و تشخیص دهد؟ این موقعیت جدید میتواند - همانطور که دریفوس توضیح داده - کاملا منحصر بفرد و وابسته به کانتکست باشد. تطبیق ماشینی چنین وضعیتی بر موقعیتهای تمرینشدهی قبلی، صرفا به خروجی نادرست و نابجا (irrelevant) خواهد انجامید.
علاوه بر این حتی در مواردی که به دستهبندی درست موقعیت جدید دست یابد، تازه به پاسخهای ذخیرهشده در دوران کارورزی مراجعه و آنها را بنحوی متناسب تکرار میکند که باز در برابر استدلالهایی نظیر ند بلاک (آزمون عمه برتا) و جان سرل (آزمون اتاق چینی) قرار میگیرد.
⛄️ بدینترتیب رویکردهای محاسباتی - چه رویکرد کلاسیک (#GOFAI) و چه رویکرد پیوندگرایی (#Connectionism) - در ساخت هوش مصنوعی با چالشهای جدی نظری روبهرو هستند. هرچند که در واقع بخش عظیمی از لابراتوارهای هوش مصنوعی را در تسخیر خود داشته و دارند.
@PhilMind
🔐رویکرد محاسباتی به ذهن، حاصل پیشرفتها و دستاوردهایی بود که از نیمه قرن بیستم در حوزه مهندسی کامپیوتر و هوش مصنوعی اتفاق افتاد و رفته رفته این نگرش را گسترش داد که چه بسا #مغز هم دقیقا – و نه بعنوان تشبیه - یک سیستم کامپیوتری باشد. بدین ترتیب ذهن را باید بمثابه نرمافزاری که بر روی سختافزار مغز اجرا میشود، در نظر گرفت.
در نگاه طرفداران این دیدگاه، فرآیندهای مهم ذهنی مانند استدلالکردن، تصمیمگیری، حل مسئله و ... قابلیت تطبیق بالایی با الگوی محاسباتیای داشتند که در ماشین تورینگی اجرا میشد؛ بدین معنا که محاسبات ذهنی با دستکاری نمادها اتفاق میافتد و این نمادها در واقع، همان #بازنمایی محتوای حالات ذهنیاند.
🔐دیدگاه فوق البته بعدها در دهه 70 و 80 توسط جری فودور تکمیل شد. او با تمرکز بر دستکاری نمادها در فرآیند محاسباتی، سیستمی از بازنمایی ذهنی را مطرح کرد که حاوی نمادهای #زبان_ذهن (mentalese) یا زبان تفکر(Language of Thought: LOT) بودند. گرایشات گزارهای (حالات ذهنی مانند باور و میل و تردید و امید و ... که معطوف به یک گزاره هستند)، در نگاه فودور در واقع با این نمادهای زبان ذهن مرتبطاند و این نمادها نیز حاصل زنجیره علّی ارتباط با محیطاند که درون سیستم عصبی بازنمایی میشوند. (Fodor, 1975, The Language of Thought)
فودور بدنبال انتقادات فراوانی که به درونگرایانه بودن #نظریه_محاسباتی_ذهن میشد، بعدها تلاش کرد #محتوای_وسیع (wide content) ذهنی را در قالب محاسبات به شیوهای که شبیه قوانین بازنمایی وسیع باشد، توضیح دهد (Fodor, 1994, The Elm and the Expert)، هرچند قابلیتهای بازنمایی محلی (local) در نظریه وی برای این هدف کفایت نمیکرد و مناقشات در اینباره را باقی گذاشت.
🔐اما به هرحال تئوری محاسباتی فودور که در واقع تلفیقی از محاسبهگرایی (#computationalism) و #بازنمودگرایی (#representationalism) است، با استقبال فراوانی در حوزه #علوم_شناختی مواجه شد و بعدها نیز #رویکرد_محاسباتی در چارچوب #پیوندگرایی تداوم یافت.
در واقع دیدگاه فودور اگرچه فرآیند محاسباتی را منتزع از ساختار بیولوژیک بازنماییکننده لحاظ میکرد تا بتواند مدل محاسباتی ماشین تورینگی را فارغ از دستگاه سیلیکونی یا نورونی بازنماییکننده لحاظ نماید، بعدها با اهمیتیافتن ساختار نوروبیولوژیک در چارچوب علوم شناختی، به دیدگاه پیوندگرایی (#connectionism) شیفت کرد که فرآیند محاسباتی و بازنمایی محتوای ذهنی را در قالب اتصالات و شلیکهای شبکه نورونی تبیین کند.
هرچند هسته اصلی دیدگاه محاسباتی همچنان برقرار باقی ماند و شلیکهای نورونی در مسیرهای توزیعشده موازی، در جایگاه همان نمادهای زبان ذهن مینشستند که توسط سیستم عصبی دستکاری میشوند.
@PhilMind
فلسفه ذهن
فراز و فرود هوش مصنوعی ۱ 🚩 #هوش_مصنوعی از این ایده جذاب که در کنفرانس دارموث (۱۹۵۶) بیان گردید، آغا
فراز و فرود هوش مصنوعی ۲
🚩 در اواسط دهه 1980 حداقل چهار گروه مختلف، نوعی #الگوریتم_یادگیری را بازتولید کردند که اولینبار در 1969 پایهگذاری شده بود. این الگوریتم برای بسیاری مسائل #یادگیری_ماشین و انتشار گسترده نتایج در مجموعه پردازش توزیعشده موازی (Parallel Distributed Processing) بکار گرفته شد که موجب شور و هیجان فراوان گردید.
این مدلهای هوش که «پیوندگرا: Connectionist» خوانده میشوند، بعنوان رقیب مستقیم برای دو مدل نمادی (که توسط نوِل و سیمون ارتقاء یافت) و رویکرد منطقی (که بوسیله مککارتی و دیگران مطرح شد) تلقی میگردید.
🚩 شاید واضح بنظر برسد که انسانها نیز در برخی سطوح با دستکاری نمادها کار میکنند، اما طرفداران پیوندگرایی میپرسیدند آیا دستکاری نمادها هیچ نقش تبیینی واقعی در مدلهای جزئیشده شناخت دارد؟
این سؤال بدون پاسخ باقی مانده بود، هرچند دیدگاه اخیر این است که رویکردهای نمادین و پیوندگرا، مکمل همدیگر - و نه در رقیب با هم – هستند.
🚩 با جداسازی #هوش_مصنوعی از رویکرد دیجیتال، تحقیق در شبکههای نورونی مدرن به دو حوزه تقسیم شد که یکی با خلق ساختار مؤثر شبکه و الگوریتمها و ویژگیهای ریاضیاتی آنها سروکار داشت، و دیگری با مدلسازی دقیق ویژگیهای مجموعه نورونهای واقعی.
دیگر مشخص شده بود مسائلی که ما فکر میکردیم مشکل باشند، از حل قضایای ریاضیاتی و بازی آبرومندانه شطرنج گرفته تا استدلال در علوم مختلف، آسان بودند و کامپیوترهای دهه 60 و 70 با چندهزار فرمان در ثانیه، غالباً میتوانستند نتایج رضایتبخشی را در این زمینهها فراهم آورند. مسئله گریزپا اما مهارتهایی بود که هر بچه پنجساله هم داراست؛ مثل بیان تفاوت بین یک سگ و یک گربه، یا درک یک کارتون انیمیشینی.
🚩 اواسط دهه 90 شاهد نفوذ سیستمهایی در مؤسسات مالی بودیم که از تکنیکهای قدرتمند آماری و انطباقی استفاده میکردند. نه تنها فروشگاههای بزرگ توسط شبکههای کامپیوتری مدیریت میشدند، بلکه عمده تصمیمات خرید و فروش نیز بوسیله برنامههای نرمافزاری که بنحوی فزاینده شامل مدلهای پیچیده دادوستد بودند، گرفته میشد.
🚩 با نقش مهم و روزافزون ماشینهای هوشمند در تمامی جنبههای زندگی امروزه (نظامی، پزشکی، اقتصادی، مالی، سیاسی)، عجیب است کسی در اینباره تردید داشته باشد که: «چه اتفاقی با هوش مصنوعی رخ داده است»؟
اگر تعریف ما از AI شبیه تعاریف امثال اِلین ریچ (Elaine Rich) باشد که هوش مصنوعی را معادل ماشینهایی میداند که «اعمالی را به انجام میرسانند که فعلاً افراد انسانی در انجام آنها بهتر هستند»، باید اذعان کرد که حوزه AI به موفقیتهای بزرگی دست یافته و آینده روشنتری را هم نوید میدهد.
🚩 اما اگر علاوه بر جنبه کارکردی که بر یکسری خروجیهای از سنخ داده و رفتار و گفتار تکیه دارد، جنبه پدیداری و سابجکتیو هوش و آگاهی نیز مدنظر باشد، ماجرا کاملا فرق میکند.
رویکردهای معاصر #بدنمندی (#Embodiment) و #پیوندگرایی (#Connectionism) هرچقدر که در ارائه رفتارها و کارکردهای ایدهآل یا شبیه انسان، پیشرفت داشتهاند، اما اساسا برای تولید و توسعه عالَم درونی و #آگاهی_پدیداری در ماشینها تاسیس نشدهاند.
🚩 امروزه البته بسیاری از مهندسان علوم کامپیوتر اصلا کاری با ساخت جنبه اولشخص و #تجربه_پدیداری در ماشینها ندارند و صرفا بر توسعه #هوش_مصنوعی_ضعیف تمرکز دارند؛ هوشی که البته در تسهیل و تحول زندگی بشر میتواند نقشی بسیار اساسی ایفا نماید و کارکردهای مهمی را به منصه ظهور رساند.
اما بنظر میرسد چشمانداز #هوش_مصنوعی_قوی که توسط لیدرهای این حوزه از اواسط قرن بیستم نوید داده میشد و همچنان از سوی برخی مهندسان و نظریهپردازان دنبال میشود، قابلیت تحقق در قالب رویکردهای رایج را ندارد.
و این البته بمعنای عدم امکان علیالاصول تحقق چشمانداز مذکور از هیچ طریق دیگر نیست.
@PhilMind
فلسفه ذهن
🔹بسیاری از دانشمندان #علوم_اعصاب بر این اعتقاد بوده و هستند که تعداد و تراکم نورونها در پیدایش #تجر
👇
🧩 سالهاست که با غلبه رویکرد محاسباتی در #علوم_شناختی، فرآیندهای انتزاعی محاسبات بعنوان زمینه تولید هوش و آگاهی به رسمیت شناخته شده و نزد بسیاری از دانشمندان و محققان این حوزه، ماده سازنده سیستم پردازشگر از اهمیت و موضوعیت چندانی برخوردار نبوده است. استراتژی ساخت #هوش_مصنوعی با پیادهسازی #پردازش_اطلاعات بر روی سیستمهای دیجیتالی و تراشههای الکتریکی و ... از همین دیدگاه نشأت گرفته است.
🧩 اما با وجود موفقیتها و پیشرفتهای کاربردی، ناکامی سیستمهای محاسباتی در ارائه خروجیهای شبیه انسان و چالشهای نظری که در اینباره قوت گرفته است، اهمیت دیدگاههای بیولوژیکی را توسط برخی صاحبنظران روی میز گذاشته است. سیستمهای هوش مصنوعی در توسعههای اخیر بدنبال جایگزینی معدنی برای اجزای بیولوژیک آگاهی، شبکههای مصنوعی عصبی بجای نورونهای سلولی، و منطق فازی منعطف بجای دستورالعملهای مبتنی بر پروتئین و DNA هستند تا بر متریال سازنده سیستم نیز تمرکز کنند. (Pagel & Kirshtein, 2017, Machine Dreaming and Consciousness, p.30)
🧩 موضوعیت #زیست_شناسی در هوش مصنوعی البته میتواند به معانی مختلفی مورد بحث قرار گیرد. اگر منظور از پایه بیولوژیک آگاهی صرفا در حد جریان الکتروشیمیایی موجود در شبکههای نورونی باشد، شاهد استراتژی حداقلی برای تامین هوش مصنوعی شبه بیولوژیک خواهیم بود که فقط در پی جاسازی ماده شیمیایی حامل جریان الکتریکی در شبکههای مصنوعی است. اما چنانچه ساختار مولکولی و ژنتیک مغز نیز در تولید #آگاهی نقش داشته باشد، چالشهای عمیقتری پیش روی مهندسان #AI خواهد بود.
🧩 مقاله مهمی که سه ماه پیش توسط محققان دانشگاه هایدلبرگ آلمان در محله #نیچر به چاپ رسید، نشان داد که مخچه با ساختار مولکولی و ژنتیکی خود در برخی تواناییهای شناختی مرتبه بالاتر انسان دخالت دارد. در حالیکه غالب دانشمندان، مخچه را بدلیل عدم وقوع پردازش اطلاعات در آن، دارای نقش خاصی در تولید آگاهی نمیدانستند. یافتههایی از این دست ضمن نوعی شیفت پارادایمی در #نوروساینس و هوش مصنوعی، چالش مهمی را نیز روی میز میگذارد: #ژنتیک و #DNA سلولهای نورون طبیعی را چگونه میتوان بنحوی مصنوعی زمینهسازی کرد؟ آیا صرف منطق فازی میتواند محققکننده چنین هدفی باشد؟
🧩 به هرحال اما نکته قابل توجه اینست که رویکرد #پیوندگرایی (#Connectionism) با تاکید بر محاسبات توزیعشده و پردازش موازی اطلاعات، و همچنین رویکرد #بدنمندی (#Embodiment) با تمرکز بر بدن و مواجهه مکانمند سیستم حسی- حرکتی با محیط، بصیرتهای ناشی از پژوهشهای بیولوژیک آگاهی را جدی نمیگیرند و بنظر میرسد باوجود فواید بزرگ کارکردگرایانه، در ساخت و تولید #آگاهی_مصنوعی با ابهامات و تردیدهای جدی مواجه هستند.
@PhilMind